Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurovirol ; 25(4): 520-524, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31025264

RESUMO

JC virus (JCV) can cause a lytic infection of oligodendrocytes and astrocytes in the central nervous system (CNS) leading to progressive multifocal leukoencephalopathy (PML). JCV can also infect meningeal and choroid plexus cells causing JCV meningitis (JCVM). Whether JCV also infects meningeal and choroid plexus cells in PML patients and other immunosuppressed individuals with no overt symptoms of meningitis remains unknown. We therefore analyzed archival formalin-fixed, paraffin-embedded brain samples from PML patients, and HIV-seropositive and seronegative control subjects by immunohistochemistry for the presence of JCV early regulatory T Ag and JCV VP1 late capsid protein. In meninges, we detected JCV T Ag in 11/48 (22.9%) and JCV VP1 protein in 8/48 (16.7%) PML patients. In choroid plexi, we detected JCV T Ag in 1/7 (14.2%) and JCV VP1 protein in 1/8 (12.5%) PML patients. Neither JCV T Ag nor VP1 protein could be detected in meninges or choroid plexus of HIV-seropositive and HIV-seronegative control subjects without PML. In addition, examination of underlying cerebellar cortex of PML patients revealed JCV-infected cells in the molecular layer, including GAD 67+ interneurons, but not in HIV-seropositive and HIV-seronegative control subjects without PML. Our findings suggest that productive JCV infection of meningeal cells and choroid plexus cells also occurs in PML patients without signs or symptoms of meningitis. The phenotypic characterization of JCV-infected neurons in the molecular layer deserves further study. This data provides new insight into JCV pathogenesis in the CNS.


Assuntos
Astrócitos/virologia , Plexo Corióideo/virologia , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/virologia , Meninges/virologia , Neurônios/virologia , Oligodendroglia/virologia , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Astrócitos/patologia , Autopsia , Biomarcadores/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Córtex Cerebelar/patologia , Córtex Cerebelar/virologia , Plexo Corióideo/patologia , Expressão Gênica , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , HIV/genética , HIV/patogenicidade , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Imuno-Histoquímica , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/patologia , Meninges/patologia , Neurônios/patologia , Oligodendroglia/patologia
2.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29563297

RESUMO

Studies utilizing highly pathogenic simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) have largely focused on the immunopathology of the central nervous system (CNS) during end-stage neurological AIDS and SIV encephalitis. However, this may not model pathophysiology in earlier stages of infection. In this nonaccelerated SHIV model, plasma SHIV RNA levels and peripheral blood and colonic CD4+ T cell counts mirrored early human immunodeficiency virus (HIV) infection in humans. At 12 weeks postinfection, cerebrospinal fluid (CSF) detection of SHIV RNA and elevations in IP-10 and MCP-1 reflected a discrete neurovirologic process. Immunohistochemical staining revealed a diffuse, low-level CD3+ CD4- cellular infiltrate in the brain parenchyma without a concomitant increase in CD68/CD163+ monocytes, macrophages, and activated microglial cells. Rare SHIV-infected cells in the brain parenchyma and meninges were identified by RNAScope in situ hybridization. In the meninges, there was also a trend toward increased CD4+ infiltration in SHIV-infected animals but no differences in CD68/CD163+ cells between SHIV-infected and uninfected control animals. These data suggest that in a model that closely recapitulates human disease, CNS inflammation and SHIV in CSF are predominantly mediated by T cell-mediated processes during early infection in both brain parenchyma and meninges. Because SHIV expresses an HIV rather than SIV envelope, this model could inform studies to understand potential HIV cure strategies targeting the HIV envelope.IMPORTANCE Animal models of the neurologic effects of HIV are needed because brain pathology is difficult to assess in humans. Many current models focus on the effects of late-stage disease utilizing SIV. In the era of antiretroviral therapy, manifestations of late-stage HIV are less common. Furthermore, new interventions, such as monoclonal antibodies and therapeutic vaccinations, target HIV envelope. We therefore describe a new model of central nervous system involvement in rhesus macaques infected with SHIV expressing HIV envelope in earlier, less aggressive stages of disease. Here, we demonstrate that SHIV mimics the early clinical course in humans and that early neurologic inflammation is characterized by predominantly T cell-mediated inflammation accompanied by SHIV infection in the brain and meninges. This model can be utilized to assess the effect of novel therapies targeted to HIV envelope on reducing brain inflammation before end-stage disease.


Assuntos
Encéfalo/imunologia , Linfócitos T CD4-Positivos/imunologia , Macrófagos/imunologia , Meninges/imunologia , Monócitos/imunologia , Tecido Parenquimatoso/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Contagem de Linfócito CD4 , Células Cultivadas , Modelos Animais de Doenças , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Macaca mulatta , Meninges/patologia , Meninges/virologia , Microglia/imunologia , Tecido Parenquimatoso/patologia , Tecido Parenquimatoso/virologia , RNA Viral/sangue , RNA Viral/líquido cefalorraquidiano , RNA Viral/genética , Receptores de Superfície Celular/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Carga Viral/imunologia
3.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29437972

RESUMO

JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML.IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood-cerebrospinal fluid barrier, the choroid plexus and leptomeninges are also poised to play roles in virus invasion of brain parenchyma, where infection of macroglial cells leads to the development of progressive multifocal leukoencephalopathy, a severely debilitating and often fatal infection. In this paper we show for the first time that primary choroid plexus epithelial cells and meningeal cells are infected by JCPyV, lending support to the association of JCPyV with meningoencephalopathies. These data also suggest that JCPyV could use these cells as reservoirs for the subsequent invasion of brain parenchyma.


Assuntos
Plexo Corióideo , Células Epiteliais , Vírus JC/metabolismo , Leucoencefalopatia Multifocal Progressiva , Meninges , Ritanserina/farmacologia , Linhagem Celular , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Plexo Corióideo/virologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Leucoencefalopatia Multifocal Progressiva/metabolismo , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/virologia , Meninges/metabolismo , Meninges/patologia , Meninges/virologia
4.
J Neurovirol ; 22(3): 275-81, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26572785

RESUMO

Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4(+) T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system.


Assuntos
Complexo AIDS Demência/virologia , Encéfalo/virologia , HIV-1/fisiologia , Sistema Linfático/virologia , Meninges/virologia , Monócitos/virologia , Complexo AIDS Demência/imunologia , Complexo AIDS Demência/patologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/virologia , Encéfalo/imunologia , Movimento Celular , Quimiocinas/biossíntese , Quimiocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/virologia , Endotélio Vascular/imunologia , Endotélio Vascular/virologia , HIV-1/patogenicidade , Humanos , Sistema Linfático/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Meninges/imunologia , Monócitos/imunologia , Linfócitos T/imunologia , Linfócitos T/virologia , Internalização do Vírus
5.
BMC Genomics ; 16 Suppl 5: S11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26040285

RESUMO

BACKGROUND: Meningitis is the inflammation of the meninges in response to infection or chemical agents. While aseptic meningitis, most frequently caused by enteroviruses, is usually benign with a self-limiting course, bacterial meningitis remains associated with high morbidity and mortality rates, despite advances in antimicrobial therapy and intensive care. Fast and accurate differential diagnosis is crucial for assertive choice of the appropriate therapeutic approach for each form of meningitis. METHODS: We used 2D-PAGE and mass spectrometry to identify the cerebrospinal fluid proteome specifically related to the host response to pneumococcal, meningococcal, and enteroviral meningitis. The disease-specific proteome signatures were inspected by pathway analysis. RESULTS: Unique cerebrospinal fluid proteome signatures were found to the three aetiological forms of meningitis investigated, and a qualitative predictive model with four protein markers was developed for the differential diagnosis of these diseases. Nevertheless, pathway analysis of the disease-specific proteomes unveiled that Kallikrein-kinin system may play a crucial role in the pathophysiological mechanisms leading to brain damage in bacterial meningitis. Proteins taking part in this cellular process are proposed as putative targets to novel adjunctive therapies. CONCLUSIONS: Comparative proteomics of cerebrospinal fluid disclosed candidate biomarkers, which were combined in a qualitative and sequential predictive model with potential to improve the differential diagnosis of pneumococcal, meningococcal and enteroviral meningitis. Moreover, we present the first evidence of the possible implication of Kallikrein-kinin system in the pathophysiology of bacterial meningitis.


Assuntos
Proteínas do Líquido Cefalorraquidiano/análise , Meningite Meningocócica/diagnóstico , Meningite Pneumocócica/diagnóstico , Meningite Viral/diagnóstico , Proteômica/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Humanos , Sistema Calicreína-Cinina/fisiologia , Masculino , Espectrometria de Massas , Meninges/microbiologia , Meninges/patologia , Meninges/virologia , Meningite Meningocócica/tratamento farmacológico , Meningite Meningocócica/microbiologia , Meningite Pneumocócica/tratamento farmacológico , Meningite Pneumocócica/microbiologia , Meningite Viral/tratamento farmacológico , Meningite Viral/virologia , Proteoma/análise , Adulto Jovem
6.
J Virol ; 87(16): 8896-908, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23720733

RESUMO

Nonhuman primate-simian immunodeficiency virus (SIV) models are powerful tools for studying the pathogenesis of human immunodeficiency virus type 1 (HIV-1) in the brain. Our laboratory recently isolated a neuropathogenic viral swarm, SIVsmH804E, a derivative of SIVsmE543-3, which was the result of sequential intravenous passages of viruses isolated from the brains of rhesus macaques with SIV encephalitis. Animals infected with SIVsmH804E or its precursor (SIVsmH783Br) developed SIV meningitis and/or encephalitis at high frequencies. Since we observed macaques with a combination of meningitis and encephalitis, as well as animals in which meningitis or encephalitis was the dominant component, we hypothesized that distinct mechanisms could be driving the two pathological states. Therefore, we assessed viral populations in the meninges and the brain parenchyma by laser capture microdissection. Viral RNAs were isolated from representative areas of the meninges, brain parenchyma, terminal plasma, and cerebrospinal fluid (CSF) and from the inoculum, and the SIV envelope fragment was amplified by PCR. Phylogenetic analysis of envelope sequences from the conventional progressors revealed compartmentalization of viral populations between the meninges and the parenchyma. In one of these animals, viral populations in meninges were closely related to those from CSF and shared signature truncations in the cytoplasmic domain of gp41, consistent with a common origin. Apart from magnetic resonance imaging (MRI) and positron-emission tomography (PET) imaging, CSF is the most accessible assess to the central nervous system for HIV-1-infected patients. However, our results suggest that the virus in the CSF may not always be representative of viral populations in the brain and that caution should be applied in extrapolating between the properties of viruses in these two compartments.


Assuntos
Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Encefalite Viral/patologia , Meningite Viral/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Animais , Líquido Cefalorraquidiano/virologia , Análise por Conglomerados , Encefalite Viral/virologia , Produtos do Gene env/genética , Microdissecção e Captura a Laser , Macaca mulatta , Meninges/virologia , Meningite Viral/virologia , Dados de Sequência Molecular , Filogenia , Plasma/virologia , Reação em Cadeia da Polimerase , RNA Viral/genética , RNA Viral/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência , Vírus da Imunodeficiência Símia/isolamento & purificação , Virulência
7.
J Med Virol ; 84(2): 282-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22170549

RESUMO

Enteroviruses (EVs) and human herpesviruses (HHVs) are involved frequently in acute neurological disorders of viral etiology. This study aimed to investigate the incidence of herpes simplex virus types-1 (HSV-1) and 2 (HSV-2), varicella-zoster virus (VZV), cytomegalovirus (CMV), human herpesvirus 6 (HHV-6) and human enteroviruses (EVs) in cerebrospinal fluid (CSF) samples of Tunisian immunocompetent patients with neuromeningeal disorders. The patients had been hospitalized at the Fattouma Bourguiba University Hospital (Monastir, Tunisia) between September 2007 and June 2009. At least one viral genome was detected in 58 (46%) out of 126 CSF samples collected. Enterovirus was detected in 31 of the positive samples (53.4%), CMV in 20 (34.5%), HSV-1 in 3 (5.2%), HSV-2 in 6 (10.3%), VZV in 4 (6.9%), HHV-6 in 2 (3.4%). More than one viral genome was detected in seven CSF samples, including CMV DNA in six of the samples. The high frequency of enteroviral infections in aseptic meningitis was confirmed. The detection of CMV DNA only suggests a direct role of this virus in the etiology of acute neuromeningeal disorder.


Assuntos
Infecções por Enterovirus/líquido cefalorraquidiano , Enterovirus/isolamento & purificação , Infecções por Herpesviridae/líquido cefalorraquidiano , Herpesviridae/isolamento & purificação , Meningite/líquido cefalorraquidiano , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Citomegalovirus/isolamento & purificação , DNA Viral/líquido cefalorraquidiano , Enterovirus/imunologia , Feminino , Herpesviridae/imunologia , Infecções por Herpesviridae/epidemiologia , Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/isolamento & purificação , Herpesvirus Humano 2/isolamento & purificação , Herpesvirus Humano 3/isolamento & purificação , Herpesvirus Humano 6/isolamento & purificação , Humanos , Lactente , Masculino , Meninges/patologia , Meninges/virologia , Meningite/patologia , Meningite/virologia , Pessoa de Meia-Idade , RNA Viral/líquido cefalorraquidiano , Tunísia/epidemiologia , Adulto Jovem
8.
Infect Genet Evol ; 11(1): 31-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21055482

RESUMO

Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy.


Assuntos
Encéfalo/virologia , HIV-1/fisiologia , Meninges/virologia , HIV-1/classificação , HIV-1/genética , Humanos , Filogenia
9.
Ann N Y Acad Sci ; 1153: 256-63, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19236348

RESUMO

The Herpes simplex virus-1 (HSV-1) is responsible for several clinical manifestations in humans, including encephalitis. To induce encephalitis, C57BL/6 mice were inoculated with 10(4) plaque-forming cells of HSV-1 by the intracranial route. Met-RANTES (regulated upon activation, normal T cell expressed and presumably secreted) (10 microg/mouse), a CC chemokine family receptor (CCR)1 and CCR5 antagonist, was given subcutaneously the day before, immediately after, and at days 1, 2, and 3 after infection. Treatment with Met-RANTES had no effect on the viral titers. In contrast, intravital microscopy revealed that treatment with Met-RANTES decreased the number of leukocytes adherent to the pial microvasculature at days 1 and 3 after infection. The levels of the chemokines CCL3, CCL5, CXCL1, and CXCL9 increased after infection and were enhanced further by the treatment with Met-RANTES. Treatment with a polyclonal anti-CCL5 antibody 2 h before the intravital microscopy decreased leukocyte adhesion in the microcirculation of infected mice. In conclusion, CCL5, a chemokine that binds to CCR1 and CCR5, is essential for leukocyte adhesion during HSV-1 encephalitis. However, blocking of CCR1 and CCR5 did not affect HSV-1 replication, suggesting that other immune mechanisms are involved in the process of infection control.


Assuntos
Movimento Celular , Quimiocina CCL5/imunologia , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/virologia , Leucócitos/patologia , Animais , Anticorpos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Quimiocina CCL5/farmacologia , Chlorocebus aethiops , Modelos Animais de Doenças , Encefalite por Herpes Simples/patologia , Endotélio/efeitos dos fármacos , Endotélio/virologia , Herpesvirus Humano 1/fisiologia , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/virologia , Meninges/irrigação sanguínea , Meninges/efeitos dos fármacos , Meninges/patologia , Meninges/virologia , Camundongos , Camundongos Endogâmicos C57BL , Células Vero , Carga Viral
10.
Nature ; 457(7226): 191-5, 2009 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19011611

RESUMO

Lymphocytic choriomeningitis virus infection of the mouse central nervous system (CNS) elicits fatal immunopathology through blood-brain barrier breakdown and convulsive seizures. Although lymphocytic-choriomeningitis-virus-specific cytotoxic T lymphocytes (CTLs) are essential for disease, their mechanism of action is not known. To gain insights into disease pathogenesis, we observed the dynamics of immune cells in the meninges by two-photon microscopy. Here we report visualization of motile CTLs and massive secondary recruitment of pathogenic monocytes and neutrophils that were required for vascular leakage and acute lethality. CTLs expressed multiple chemoattractants capable of recruiting myelomonocytic cells. We conclude that a CD8(+) T-cell-dependent disorder can proceed in the absence of direct T-cell effector mechanisms and rely instead on CTL-recruited myelomonocytic cells.


Assuntos
Sistema Nervoso Central/irrigação sanguínea , Sistema Nervoso Central/patologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Meningite Viral/imunologia , Meningite Viral/patologia , Monócitos/imunologia , Neutrófilos/imunologia , Doença Aguda , Animais , Barreira Hematoencefálica/fisiopatologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Meninges/irrigação sanguínea , Meninges/imunologia , Meninges/patologia , Meninges/virologia , Meningite Viral/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Infiltração de Neutrófilos , Neutrófilos/citologia , Convulsões/imunologia , Convulsões/patologia , Convulsões/fisiopatologia , Células Estromais/virologia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia
11.
J Child Neurol ; 23(9): 1072-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18827273

RESUMO

Neurologic complications, including meningoencephalitis, transverse myelitis, and peripheral neuropathy, have been reported in patients with acute infectious mononucleosis. Chronic active Epstein-Barr virus and human immunodeficiency virus infections occasionally induce central nervous system lymphoma. On the other hand, central nervous system disease alone associated with Epstein-Barr virus rarely occurs in previously healthy individuals. A 15-year-old girl who developed acute disseminated encephalomyelitis-like disease presenting fever, anuresis, diplopia, and muscle weakness is described here. Clinical and neuroimaging studies led to the diagnosis of encephalomyelitis. Despite the absence of infectious mononucleosis-like symptoms, anti-Epstein-Barr virus antibody titers in serum and cerebrospinal fluid showed the virus reactivation. The copy number of Epstein-Barr virus DNA increased in cerebrospinal fluid but not in peripheral blood. Ganciclovir and repeated methyl-prednisolone pulse therapy resulted in complete resolution. Central nervous system disease on the limited intrathecal reactivation of Epstein-Barr virus in immunocompetent children should be differentiated from acute disseminated encephalomyelitis.


Assuntos
Encefalite Viral/virologia , Herpesvirus Humano 4/fisiologia , Mononucleose Infecciosa/complicações , Mononucleose Infecciosa/virologia , Meningite Viral/virologia , Replicação Viral/fisiologia , Adolescente , Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Encéfalo/patologia , Encéfalo/fisiopatologia , Encéfalo/virologia , DNA Viral/análise , Encefalite Viral/imunologia , Encefalite Viral/fisiopatologia , Feminino , Dosagem de Genes/genética , Humanos , Imunocompetência/imunologia , Imageamento por Ressonância Magnética , Meninges/patologia , Meninges/fisiopatologia , Meninges/virologia , Meningite Viral/imunologia , Meningite Viral/fisiopatologia , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Medula Espinal/virologia , Espaço Subaracnóideo/patologia , Espaço Subaracnóideo/fisiopatologia , Espaço Subaracnóideo/virologia , Resultado do Tratamento , Carga Viral
13.
J Virol ; 79(17): 11343-52, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16103186

RESUMO

"Phylodynamic" analysis combines various statistical procedures that can be used to correlate the epidemiological and evolutionary behavior of viral pathogens with the immune system of the host. We utilized this approach to examine human immunodeficiency virus type 1 (HIV-1) gp120 envelope DNA sequences (V1, V2, and V3) isolated from different brain compartments of a T-cell-depleted patient diagnosed with severe HIV-associated dementia at the time of death. In agreement with previous reports, phylogenetic analysis showed distinct virodemes but also revealed a significant amount of viral gene flow among different brain compartments. Local-molecular-clock analysis showed that HIV-1 meninges and temporal lobe subpopulations evolve about 30 and 100 times faster, respectively, than the other viral populations in the brain. However, maximum likelihood codon-based substitution models did not detect any site under significant positive selective pressure, and the main cause of HIV-1 genetic variation appeared to be random genetic drift. Therefore, the higher evolutionary rate in the meninges and temporal lobe could be due to an enhanced infection/expansion rate of macrophages as a consequence of the immune system failure. In conclusion, in this case study, viral infection in the brain progressed with a nonspecific genetic evolution, recurrent migration events, and an expansion of macrophage-tropic sequences. The data suggest that after immune failure newly produced viral variants, which would be rapidly cleared under normal conditions, begin to productively infect macrophages in a "self-amplifying" cycle of infection/inflammatory response that could be at the origin of HIV-associated dementia.


Assuntos
Complexo AIDS Demência/virologia , HIV-1/genética , Filogenia , Complexo AIDS Demência/imunologia , Sequência de Aminoácidos , Encéfalo/virologia , HIV-1/isolamento & purificação , Humanos , Linfonodos/virologia , Meninges/virologia , Dados de Sequência Molecular , Especificidade de Órgãos , Alinhamento de Sequência
15.
J Infect Dis ; 191(4): 540-5, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15655777

RESUMO

Precise information about varicella-zoster virus (VZV) infection in first-trimester fetuses remains sketchy. After varicella infection was diagnosed in a woman, her 12-week-old fetus was aborted and was investigated, by histological examination, virus culturing, polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), for the presence of VZV infection. Only the results of the histological examination suggested the presence of alpha -herpesvirus infection, in the gastrointestinal tract and liver; results of ISH were positive for VZV, and results of IHC staining were positive for intermediate early protein 63 (IE63) but negative for glycoprotein E (gE), in the dorsal root ganglia (DRG), meninges, gastrointestinal tract, pancreas, smooth muscle, liver, and placental trophoblast, indicating the presence of a nonproductive, latency-like VZV infection. Only the gastrointestinal tract and liver exhibited simultaneous staining for IE63 and gE, a result suggesting that active replication of VZV was present. In conclusion, widespread nonproductive VZV infection in the absence of histological clues is an early event in VZV infection in fetuses. The observed gene-expression pattern in most tissues resembles that of latent VZV infection in DRG. Latency-like infection in nonneural cell types may potentially reactivate, leading to multifocal necrosis, fibrosis, and dystrophic calcifications, as observed in advanced congenital varicella syndrome.


Assuntos
Varicela/virologia , DNA Viral/análise , Doenças Fetais/virologia , Feto/virologia , Herpesvirus Humano 3/isolamento & purificação , Primeiro Trimestre da Gravidez , Proteínas Virais/análise , Adulto , Varicela/patologia , Feminino , Gânglios Espinais/virologia , Trato Gastrointestinal/virologia , Herpesvirus Humano 3/fisiologia , Humanos , Fígado/virologia , Meninges/virologia , Músculo Liso/virologia , Pâncreas/virologia , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez , Ativação Viral , Latência Viral , Replicação Viral
16.
J Neuropathol Exp Neurol ; 63(7): 750-8, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15290900

RESUMO

The human polyomavirus JC (JCV) is the etiologic agent of progressive multifocal leukoencephalopathy (PML), a demyelinating disease of the CNS that occurs in immunosuppressed individuals. Because polyomavirus-induced CNS pathology usually occurs as a result of the reactivation of latent virus, little is known about the disease manifestations of a primary polyomavirus-induced disease in man. To model such a primary infection, SV40-negative rhesus monkeys were immunosuppressed by infection with the virus SHIV-89.6P and then superinfected with the polyomavirus SV40. The animals developed CNS pathology characterized by both demyelination and meningoencephalitis. This observation suggests that a primary polyomavirus infection can be associated with an inflammatory CNS process. These data shed new light on the pathogenic mechanisms of primate polyomaviruses in the immunocompromised host.


Assuntos
Doenças Desmielinizantes/patologia , Leucoencefalopatia Multifocal Progressiva/patologia , Macaca mulatta/virologia , Meningoencefalite/patologia , Infecções por Polyomavirus/patologia , Vírus 40 dos Símios/patogenicidade , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Encéfalo/virologia , Doenças Desmielinizantes/fisiopatologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Hospedeiro Imunocomprometido/fisiologia , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/fisiopatologia , Leucoencefalopatia Multifocal Progressiva/virologia , Macaca mulatta/imunologia , Meninges/patologia , Meninges/fisiopatologia , Meninges/virologia , Meningoencefalite/fisiopatologia , Meningoencefalite/virologia , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/virologia , Infecções Oportunistas , Infecções por Polyomavirus/fisiopatologia
17.
Acta Neuropathol ; 101(4): 341-50, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11355305

RESUMO

We have observed a cell-specific attenuation of herpes simplex virus type 1 strain 17syn+ in vivo that was dependent upon the cell type used to grow the virus. Direct corneal infection of rabbits with 17syn+ propagated in Vero cells caused 60% (6 of 10) to develop severe central nervous system (CNS) disease as evidenced by seizures and/or paralysis; all neurologically impaired rabbits died. In contrast, infection of rabbits with 17syn+ propagated in BHK-21 cells induced seizures and was fatal in 10% (1 of 10). The cell-specific attenuation of a 17syn+ occurred after one growth cycle in BHK-21 cells. To determine whether the decreased virulence of the BHK-21 cell-grown virus correlated with a less severe CNS inflammatory reaction, CNS tissues from rabbits infected with 17syn+ grown in Vero and BHK-21 cells were compared. Histopathological analyses revealed no differences in the location or severity of inflammatory lesions from rabbits infected with virus grown in either cell type. Virus-induced corneal disease was less dependent upon the cell type used to propagate the virus as there were no significant differences in the type or severity of observed corneal lesions. Possible explanations based on differences between Vero and BHK-21 cells are discussed.


Assuntos
Encefalite por Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Ceratite Herpética/virologia , Cultura de Vírus , Animais , Encéfalo/patologia , Encéfalo/virologia , Chlorocebus aethiops , Cricetinae , Encefalite por Herpes Simples/patologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 1/isolamento & purificação , Ceratite Herpética/patologia , Meninges/patologia , Meninges/virologia , Mesocricetus , Bulbo Olfatório/patologia , Bulbo Olfatório/virologia , Especificidade de Órgãos , Coelhos , Organismos Livres de Patógenos Específicos , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Nervo Trigêmeo/patologia , Nervo Trigêmeo/virologia , Células Vero , Virulência
18.
Arch Pathol Lab Med ; 122(11): 1026-9, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9822134

RESUMO

To our knowledge, five cases of Castleman's disease involving only the central nervous system have been reported previously. We report a sixth case, which occurred in a 47-year-old woman with a 3-month history of headaches and a large superior frontal lobe mass on neuroimaging. Excisional biopsy revealed confluent lymphoid nodular areas with multiple well-developed germinal centers surrounded by concentrically layered proliferations of small B lymphocytes typical of Castleman's disease. Ultrastructural study found 100-nm virallike particles within follicular dendritic cells as well as intercellular spaces. These particles were suggestive of a D-type retrovirus. The patient underwent postoperative radiotherapy and was neurologically normal 3 months after surgery.


Assuntos
Betaretrovirus/ultraestrutura , Encefalopatias/virologia , Hiperplasia do Linfonodo Gigante/virologia , Células Dendríticas/virologia , Meninges/virologia , Infecções por Retroviridae/patologia , Infecções Tumorais por Vírus/patologia , Encefalopatias/patologia , Hiperplasia do Linfonodo Gigante/patologia , Células Dendríticas/ultraestrutura , Feminino , Humanos , Imageamento por Ressonância Magnética , Meninges/ultraestrutura , Pessoa de Meia-Idade , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/virologia
20.
J Neuroimmunol ; 86(2): 202-12, 1998 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-9663567

RESUMO

Generally, interferon-gamma (IFN-gamma) is considered a critical regulator of T cell mediated inflammation. For this reason, we investigated the pathogenesis of lymphocytic choriomeningitis in mice with a targeted defect of the gene encoding this cytokine. Our results revealed that IFN-gamma is redundant in the afferent phase of the antiviral T cell response as well as a local mediator of this T cell mediated inflammatory disease. However, IFN-gamma may play an indirect role as it is involved in reducing extraneural infection that may compete with CNS for available effector cells. Analysis of the inflammatory exudate disclosed that leucocyte recruitment was unimpaired in the absence of IFN-gamma as was the upregulation of ICAM-1 and VCAM-1 on endothelium at the inflammatory site. However, local macrophage activation (production of tumor necrosis-alpha and NO) was significantly impaired. Notably, a viral peptide could also elicit a T cell mediated inflammatory response in virus-primed IFN-gamma knock-out mice, indicating that redundancy of this cytokine as a proinflammatory mediator is not restricted to inflammatory reactions triggered by an active infection. Thus, T cell mediated inflammation may be induced in the absence of IFN-gamma and local macrophage activation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interferon gama/genética , Coriomeningite Linfocítica/imunologia , Macrófagos/imunologia , Camundongos Knockout/imunologia , Animais , Moléculas de Adesão Celular/imunologia , Edema/imunologia , Edema/virologia , Endotélio/química , Endotélio/imunologia , Feminino , Citometria de Fluxo , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Antígeno de Macrófago 1/análise , Masculino , Meninges/imunologia , Meninges/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...